Review for Test 2: Chemical Bonding

1. Compare the following terms:

a) Similarity: both diagrams illustrate the bonding between atoms in a compound

Differences:

Lewis diagram	Structural diagram
 valence electrons, represented by dots or x's, are written around each atom's symbol can be drawn for atoms, ions, ionic compounds and covalent compounds 	 no valence electrons are shown in the diagram. Instead shared pairs of electrons are represented by a dash, one dash /pair can only be drawn for covalent compounds

b) Similarity: both are forces that hold atoms together in compounds

Differences:

Ionic bond	Covalent bond
 formed between a metal and a non-metal valence electrons are transferred from one atom (the metal) to the other atom (the non-metal) 	 formed between two non-metals valence electrons are shared between the two atoms

c) Similarity: both are covalent bonds

Differences:

Single bond	Double bond	
 one pair of electrons is shared 	 two pairs of electrons are shared 	
between the two atoms	between the two atoms	

d) Similarity: both are covalent bonds

Differences:

Polar bond	Non-polar bond
 the shared pair of electrons are not shared evenly between the two atoms in the bond 	 the shared pair of electrons are shared evenly between the two atoms in the bond
 formed between two atoms with different electronegativity values 	aroms in the bond

- partial charges are formed on the atoms in the bond, δ- for the atom with the higher electronegativity value and δ+ for the other atom
- formed between two atoms with the same (or almost the same) electronegativity values
- no partial charges on the atoms in the bond
- e) Similarity: in both the atoms do not have partial charges; valence electrons are evenly shared between the atoms

Differences:

Non-polar molecule	Non-polar bond
 electronegativity values of the atoms involved may or may not have the same values; the even sharing of valence electrons may be due to the shape and direction of pull on the electrons 	Electronegativity values of the atoms involved are the same or close to the same

f) Similarity: both are shapes of molecules that consist of a central atom surrounded by 3 bonding atoms

Differences:

Trigonal planar shape	Trigonal pyramid shape
 Shape is 2-D 	• Shape is 3-D
 No lone pairs around the central 	 One lone pair around the central
atom	atom
 Symmetrical shape 	 Non-symmetrical shape

g) Similarity: both are shapes of molecules that can be made from a central atom surrounded by two bonding atoms

Differences:

Linear shape	v-shape
 No lone pairs around the central 	 lone pair(s) around the central atom
atom	 must have 3 atoms
 Can be made with only 2 atoms 	

- 2. Draw the Lewis diagrams for the following:
 - a) lithium sulfide
 - c) silver nitrate
 - e) nitrogen trifluoride
 - g) phosphide ion
 - i) hydroxide

- b) calcium phosphide
- d) carbon monoxide
- f) aluminum
- h) calcium ion

[Li] [xsx] [Li]	[G]* [P;]* [G]* [A]*
[Ag]* [N:0;]	C; (X) :C;:0:
·F·XX°F: ·F:	*ÁI*
[xyx]3-	[Ca] ²⁴

3. Draw structural diagrams for the following:

- a) Sulfur monoxide
- b) Cl₂
- c) Ammonium chloride

e) NO₂

- f) SiO₂
- g) CH₂Cl₂

i) CNm) C₂H₄

- j) O₃ n) C₂H₂
- k) NH₃

d) N₂ h) PO₄³⁻ l) CO₃²⁻

5=0	C1-C1
H-N-H [C:]	N=N
[0-N=0]	0=5; =0
H 1 1+-C-C1 - L	[0-P-0]
[C=N]	0=0-0
H H - N - H *x	$\begin{bmatrix} 0 - C - 0 \end{bmatrix}^{2}$
# C = C + H	H-CEC-H

- 4. Draw and name the shape of:
 - a) NO₂-

- b) SiO₂
- c) CH₂Cl₂

d) O₃

e) NH₃

- f) CO₃²⁻
- g) CH₂CH₂

[0, Nig] V-shaped	0=Si=0 linear
H. a. a. tetrahedron	5/00 V-Shaped
H'2 H Pyramid	(i) trigonal planar
H C=C H	

5. Rank the following bonds from highest to lowest polarity and then assign partial charges where appropriate. O-O O-H O-Cl C-H P-H

O-H O-Cl C-H O-O P-H

- 6. Which compounds below will be polar molecules? Assign partial charges to the polar molecules.
 - a) SiO₂

- b) CH₂Cl₂
- c) NH₃

* Could also be considered to be

non-polar l'e den C-H = 0.4 Den C-C = 0.4

	llowing compounds are ionic, purely	v covalent or polar covalent.
	ne greatest ionic character?	
a) I ₂	b) SO ₂	c) OCl ₂
d) Fe ₂ O ₃	e) KBr	f) SrO
g) BCl ₃	h) HF	i) CsF
g) beig	ny m	i) csi
	Sulfur dioxide	
Iz purely covalent	502 505-	ci CISH dichlorid
		st polar covalent
lodine	polarcevalent	psul water
Fez O3 ionic	KBr ionic	Sco isnic
iron (III) oxide	potassium bromide	strontium skide
BCI3 B-CI	HF pslar	CSF i'anic Cesium flustide
AGA purely	hydrogen fluoride	* greatest isnic
Cévalent	1	character Den = 3.2
ie non-polar		
•		
8. Create all the possible formulas	of substances formed between o	xygen and chlorine and name each.
CI O CI	o dichlarine man	oxide ClaOz
+1 -2		
	.03 dichlorine triox	
74 Cl	205 dichlarine per	ntablide heptablide
9. Complete the following chart.		
Name	Formula	
a) Lithium chlorate	LiClO ₃	
b) Sodium hydroxide	NaOH	
c) Silver nitrate	AgNO ₃	
d) Zinc bromide	ZnBr ₂	
e) Magnesium sulfide	MgS	

H₂CO_{3(aq)}

Cu₃P

f)

g)

Carbonic acid

Copper (I) phosphide

h)	Silicon dioxide	SiO ₂
i)	Sulfurous acid	H ₂ SO _{3(aq)}
j)	Lead (II) sulfate	PbSO ₄
k)	Dinitrogen tetraoxide	N ₂ O ₄
I)	Tin(IV) oxide	SnO ₂
m)	Phosphorus pentachloride	PCI ₅
n)	Potassium nitrate	KNO ₂
0)	Sulfur monoxide	SO
p)	Calcium cynanide	Ca(CN) ₂
q)	Nitrous acid	HNO _{2(aq)}
r)	Iron (II) nitrate	Fe(NO ₃) ₂
s)	Calcium hydrogen carbonate	Ca(HCO ₃) ₂
t)	Beryllium fluorate	Be(FO ₃) ₂
u)	Hydroiodic acid	HI _(aq)
v)	Phosphoric acid	H ₃ PO _{4(aq)}
w)	Sodium dihydrogen phosphate	NaH ₂ PO ₄
x)	Bromic acid	HBrO _{3(aq)}
y)	Aluminum phosphate	AIPO ₄
z)	Sulfuric acid	H ₂ SO _{4(aq)}